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Abstract

Previous neural models on open-domain conversation gener-
ation have no effective mechanisms to manage chatting top-
ics, and tend to produce less coherent dialogs. Inspired by
the strategies in human-human dialogs, we divide the task
of multi-turn open-domain conversation generation into two
sub-tasks: explicit goal (chatting about a topic) sequence
planning and goal completion by topic elaboration. To this
end, we propose a three-layer Knowledge aware Hierarchical
Reinforcement Learning based Model (KnowHRL). Specif-
ically, for the first sub-task, the upper-layer policy learns to
traverse a knowledge graph (KG) in order to plan a high-level
goal sequence towards a good balance between dialog coher-
ence and topic consistency with user interests. For the sec-
ond sub-task, the middle-layer policy and the lower-layer one
work together to produce an in-depth multi-turn conversation
about a single topic with a goal-driven generation mecha-
nism. The capability of goal-sequence planning enables chat-
bots to conduct proactive open-domain conversations towards
recommended topics, which has many practical applications.
Experiments demonstrate that our model outperforms state of
the art baselines in terms of user-interest consistency, dialog
coherence, and knowledge accuracy.

Introduction

As letting machines talk with humans is one of the goals
of AI, lots of research efforts have been devoted to open-
domain conversation generation (Shang, Lu, and Li 2015).
However, these Seq2Seq based models tend to produce
generic or less coherent responses. To address this issue, pre-
vious studies introduce external knowledge (Liu et al. 2018;
Zhou et al. 2018) or topic information (Wang et al. 2018;
Xing et al. 2017) to improve dialog informativeness. More-
over, there are other studies to employ reinforcement learn-
ing (RL) with the aim of generating coherent and long-
lasting multi-turn dialogs (Li et al. 2016b; Yao et al. 2018;
Zhang et al. 2018; Zhao, Xie, and Eskenazi 2019).

Although these models have achieved promising results,
they still tend to produce less coherent dialogs with loosely-
connected topics especially for a long conversation. It may
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be explained by that they have no modules or effective mech-
anisms to manage chatting topics to ensure dialog coher-
ence. Previous study (Hirano and Matsuo 2016) indicates
that dialog management strategies are quite universal in
human-human dialogs, e.g., topic changing or topic elabora-
tion. Therefore, chatting topic management is crucial to gen-
erating coherent dialogs. Moreover, it is quite challenging
to learn the decision-making process for topic management
merely from dialog data without the help of background
knowledge.

To address these issues, there are two key challenges.
The first one is how to conduct high-level goal1 sequence
planning. This is difficult in that the chatbot should main-
tain inter-topic coherence2, and at the same time it should
also take consideration of user interests for goal decision
to avoid “one-sided” conversation. The second one is how
to generate an in-depth multi-turn conversation about a sin-
gle topic for goal completion, which corresponds to intra-
topic coherence2. The capability of goal-sequence planning
enables chatbots to conduct proactive open-domain conver-
sations towards recommended topics (Moon et al. 2019;
Li et al. 2018; Tang et al. 2019; Wu et al. 2019).

To this end, we present a three-layer Knowledge graph
grounded Hierarchical RL model (KnowHRL) for goal-
sequence planning and goal completion by topic elabora-
tion. The upper-layer policy corresponds to the first chal-
lenge, and the other two policies correspond to the second
challenge. The upper-layer policy is a Multilayer Percep-
tron (MLP) based model, which learns natural paths over
a knowledge graph (KG) in order to plan a coherent, di-
verse and long-lasting goal sequence. At the same time, we

1In this paper, goal refers to in-depth conversation about a given
topic, which is an entity in a knowledge graph. It should be noted
that the propose framework can be extended to cover more kinds
of goals, e.g., recommending items by conversation, or booking
a ticket, and so on, if we augment the KG to incorporate related
resource for these types of goals.

2In this work, inter-topic coherence indicates that the whole
conversation is composed of well-connected topics as a sequence,
and intra-topic coherence indicates that each topic is elaborated by
well-connected consecutive utterances.
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Goals Topic Facets Utterances
<Between Calmness Start of Session M: Do you like love movies?
and Enthusiasm> U: Yes, I often watch love movies recently.

M: Then you can go to see the movie <Between Calmness and
Enthusiasm>(2001). It’s a love movie.
U: I’ve seen this movie. There are many cheaters in it. Another movie
with the same rating is <The World Is Not Enough>(1999).

<The World Is Not Starring, Robert Carlyle M: Robert Carlyle starred in this movie, whose constellation is Aries.
Enough> U: Yes, he starred. His ancestral home is Glasgow, Scotland.

Starring, Pierce Brosnan M: The film is starred by Pierce Brosnan, who was born in May 1953.
Do you know who it is?
U: Of course. He starred with Robert Carlyle and won the 24th Saturn
Award for Best Actor.

Table 1: A dialog example between KnowHRL and a human, in which there is a goal sequence “<Between Calmness and
Enthusiasm>, <The World Is Not Enough>”. “M” is KnowHRL and “U” is a human. We see that KnowHRL can plan a goal
sequence to support chatting topic management, and at the same time it can also respond appropriately to the human especially
when the human mentions a new topic, e.g., “<The World Is Not Enough>” in the example.

consider user feedback information (e.g., new topics3 from
users) in reward functions to reinforce goal sequences being
consistent with user’s interests. The middle-layer policy is
another MLP based model, which learns to select optimal
neighboring vertices around the goal vertex as topic facets
for an in-depth multi-turn conversation. Then the lower-
layer policy uses a multi-mapping based neural generation
model (Chen et al. 2019) to produce a multi-turn dialog con-
ditioned on user utterances and topic facets. Thus we pro-
vide a goal-driven generation mechanism that is composed
of the topic-facet selection operation and the use of topic-
facets to guide generation, which can guarantee the comple-
tion of the second sub-task. Finally, we employ two models,
the KnowHRL and a user simulator, to explore the space
of possible actions. The KnowHRL is trained by optimizing
long-term developer-defined rewards with advantage actor-
critic method (A2C) (Sutton and Barto 2018). Table 1 pro-
vides a dialog example between KnowHRL and a human.

Evaluations against both user simulator and human sub-
jects demonstrate the effectiveness of KnowHRL in terms of
user-interest consistency, dialog coherence, and knowledge
accuracy, when compared with state-of-the-art baselines.

Our contribution is summarized as follows:
• This work is the first attempt to divide the task of multi-

turn open-domain conversation generation into two sub-
tasks: goal-sequence planning, and goal completion by
topic elaboration. Following this strategy, we propose the
KnowHRL model.

• With the help of KG, we introduce explicit explainable
dialog states and actions for policy learning. It brings the
two benefits: (1) it is convenient to design goal related re-
wards to optimize the planning of goals and facets, (2) we
use the information of goals and facets to guide response
generation for better coherence and informativeness.

• Experiments demonstrate the effectiveness of KnowHRL
in terms of user-interest consistency, dialog coherence,
and knowledge accuracy.
3The topics that have no clear connection with current topic.

The Proposed Model

Problem Definition

Towards the aim of conducting a coherent multi-turn human-
machine dialog, we divide the task of open-domain con-
versation generation into two sub-tasks: (1) goal-sequence
planning, and (2) goal completion by generating an in-depth
conversation about a topic. We formulate such a hierarchi-
cal decision making process within the Options framework
(Sutton, Precup, and Singh 1999), which is closely related
to Semi-Markov Decision Process (SMDP). With options,
the agent can choose a “multi-step” action rather than only
choose a primitive action at each time step in the traditional
MDP settings. We treat goals as options where goals natu-
rally require multiple steps to be accomplished. Next we will
provide more details.

The KnowHRL Model

The overview of KnowHRL is shown in Figure 1. It has three
hierarchical policies, which can address two sub-tasks: goal-
sequence planning and goal completion by topic elaboration.

For the first sub-task, the upper-layer policy learns to tra-
verse a KG in order to plan a goal sequence. It is difficult in
that there should be a good balance between dialog coher-
ence and user-interest consistency. Given a vertex from the
KG as current chatting topic, the upper-layer policy learns to
select an optimal chatting topic from all the one-hop neigh-
bors of current vertex and new topics mentioned by the user.

For the second sub-task, it is quite challenging to conduct
an in-depth conversation about a given chatting topic, es-
pecially for low-resource topics. Therefore we conduct in-
depth conversation in two steps. Firstly, the middle-layer
policy selects one of one-hop neighbors of current goal ver-
tex as a topic facet. Then we use both the given goal and one
of its topic-facets to guide the lower-layer policy in order to
generate a multi-turn in-depth conversation.

Model Overview As shown in Figure 1, at time step
(t, 0, 0) (shorten as (t)), the upper-layer policy μup obtains
the state st from the environment and selects a goal gt for

9339



Figure 1: Overview of our model-KnowHRL. Goal-sequence planning is conducted by the upper-layer policy μup as shown in
the blue-dotted rectangle. In-depth conversation about a topic as shown in the orange-dotted rectangle is conducted with two
steps: (1) the middle-layer policy μmd selects facets about a topic, and (2) the lower-layer policy μlw generates a multi-turn
conversation about a facet ft,i, with more details as shown in the green-dotted rectangle. Meantime, St = St,0 and St,i = St,i,0.

Figure 2: The multi-mapping based generation model. After
the upper-layer and middle-layer policies make decisions to
select goal and topic-facet, at each time step, the facet and
corresponding context utterances are concatenated to calcu-
late response vectors r. The lower-layer policy selects one
response vector which is further decoded into a response.

the middle policy μmd and the lower policy μlw. The goal
gt is produced by sampling from its policy gt ∼ μup when
the previous goal is finished.

Towards the goal gt, the middle layer policy and the
lower-layer policy work together to produce an in-depth
conversation about a set of topic-facets. At time step (t, i, 0)
(shorten as (t, i)), the middle layer policy μmd observes the
state st and the goal gt, and then selects a facet ft,i about
gt to start (or continue) an in-depth conversation. For exam-
ple, in a conversation about X-Men, it is reasonable to talk
about “who is its director” (Bryan Singer as the answer). In
this case, the facet is a knowledge triple “[ X-Men, Direc-
tor, Bryan Singer]”. With ft,i as the topic facet, at time step
(t, i, j), the lower layer policy μlw selects a response vec-
tor vt,i,j for utterance generation through a pre-trained de-
coder (a multi-mapping based generator (Chen et al. 2019)).
Then with an utterance from KnowHRL as the input, the
user simulator will generate an appropriate response. This

dialog about ft,i between KnowHRL and the user simula-
tor will continue till the attribute name from the triple of
ft,i is mentioned or the conversation reaches the maximum
number of turns. The utterances generated from time step
(t, 0) to (t, c − 1) constitute an in-depth dialog for gt. Thus
we provide a goal-driven generation mechanism to guaran-
tee the completion of topic-elaboration task, which consists
of topic facet selection operation and the use of topic facets
to guide generation.

State The state S consists of goal history g, topic-facet
history f , context utterances u and a special symbol ut in-
dicating whether the user mentions a new topic in the last
utterance (ut = 1) or not (ut = 0). In this work, we choose
the previous two utterances as u.

At the upper-layer, the chosen goal (topic) should be
closely related to current goal (topic) to ensure inter-topic
coherence of a dialog. Therefore, we use all the neighboring
vertices of current goal vertex to constitute an action space.
Moreover, to personalize the chatting topics for the user, we
also include all the topics mentioned by the user.

At the middle-layer, its action space consists of all the
neighboring vertices of current goal vertex except the ver-
tices that have been talked about before.

At the lower-layer, its action space is infinite as arbitrary-
length utterance can be chosen, which brings difficulty to
policy learning (Li et al. 2016b). To filter the action space,
we use a set of response vectors as actions, each of which
represents a typical way to respond a given context, e.g.
responding with interrogative sentences. Specifically, with
concatenated topic-facet and contextual utterances encoded
into x as input, multiple MLP-based networks will trans-
form it into a set of response vectors {rj}NLr

j=1 , where NLr

is the number of mapping networks. Each rj can be further
decoded into a response. This process is shown in the left
part of Figure 2.

Policy For the upper-layer policy, at time step (t, 0, 0)
(shorten as (t)), we utilize three RNN encoders to represent
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state S as supt = Wup[supu,t; s
up
g,t; s

up
f,t;ut], and μup is defined

by:

μup(supt ,vgm) =
exp((supt )Tvgm)

∑NTg

l=1 exp((supt )Tvgl)
, (1)

where Wup is a weighting matrix, vgm = [egm ;nu] is the
concatenation of embedding of the m-th goal candidate egm
and nu that indicates whether gm is the new topic mentioned
by the user (nu = 1) or not (nu = 0), and NTg is the number
of goal candidates.

For the middle-layer policy, at time step (t, i), we utilize
another three RNN encoders to represent the state as smd

t,i =

[smd
u,t,i; s

md
g,t,i; s

md
f,t,i], and the policy μmd is defined by:

μmd(smd
t,i , eft,m) =

exp((smd
t,i )

T eft,m)
∑NTf

l=1 exp((smd
t,i )

T eft,l)
, (2)

where eft,m stands for the embedding of the m-th facet
candidate (by concatenating embeddings of three parts in
a knowledge triple), and NTf is the number of topic-facet
candidates. Meantime, as the completion of given goal is
formulated as “option” in SMDP, we compute a flag to indi-
cate whether we have finished current goal (flag = 1) or not
(flag = 0) based on current state. Concretely, Three RNN
encoders with LSTM units are utilized to represent state S
as st,i = [su,t,i; sg,t,i; sf,t,i;ut], and we decide the comple-
tion of the given goal with probability distribution calculated
by:

p(flag|st,i) = sigmoid(WT
a st,i), (3)

where Wa is a weighting matrix. Together, We define the
probability of deciding action ft,i at step (t, i) as: p(ft,i) =
pmd(ft,i) ∗ p(flagt,i = 0).

For the lower-layer policy, at time step (t, i, j), another
three RNN encoders are utilized to represent the state as
slowt,i,j = [slwu,t,i,j ; s

lw
g,t,i,j ; s

md
f,t,i], and policy μlw is defined by:

μlw(slwt,i,j , rm) =
exp((slwt,i,j)

T rm)
∑NLr

l=1 exp((slwt,i,j)
T rl)

, (4)

where rm stands for the m-th response vector candidate, and
NLr is the total number of response vectors.

Multi-mapping generator To capture typical ways for a
model to respond, we employ a multi-mapping based gener-
ator proposed by (Chen et al. 2019), shown in Figure 2.

First, the topic-facet triple4 and contextual utterances are
concatenated and then fed into a RNN context encoder
for computation of the context vector x. Then the genera-
tor maps x to candidate response representations {rj}NLr

j=1
through NLr different mapping functions modeled by MLP
networks5. Finally, only one candidate representation rj will
be selected and fed into a RNN decoder as initial hidden
state for response generation. During training procedure, we
utilize gumbel-softmax to sample from selection probability

4For the user simulator, only contextual utterances are used for
computation of the context vector x.

5MLPs are two-layer fully connected perceptron, with hidden
layer size as “512”. And the number of MLPs NLr = 10.

distribution π which is defined based on semantic similarity
between target response and candidates. Formally,

π =
exp(rTj y)

∑NLr

i=1 exp(rTi y)
, (5)

where y is obtained by encoding ground-truth response with
a RNN response-encoder. Intuitively, this can be seen as a
“clustering” process where targets are clustered into NLr

classes. Vector rj from each cluster represents a typical re-
sponse. After optimization, each vector rj is assumed to be
able to generate a high-quality response.

We introduce an auxiliary matching loss LM to train the
response-encoder. Particularly, for the encoded context vec-
tor x and the target response vector y, another negative sam-
ple vector y− is calculated by encoding a randomly sampled
utterance from training set with the target encoder. LM is
defined as:

LM = −logσ(x,y) + logσ(x,y−), (6)

where σ is a sigmoid function, and x and y are compared by
dot product. The loss function of the multi-mapping based
generator is defined as L = LG + LM , where LG is the
standard negative log-likelihood loss.

Rewards Next we provide the details of reward factors,
denoted as rup, rmd and rlw, used for the three layers re-
spectively.

For the upper-layer policy, we define its rewards rup as a
weighted sum of the following factors with weights {α}51.
• Coherence of the goal sequence. We calculate the average

cosine distance between the chosen goal and one of his-
tory goals in graph embedding space (TransE (Bordes et
al. 2013) trained on KG provided) as coherence reward.

• User interest consistency. This reward is 0 if the chosen
goal is not identical with the new topic mentioned by the
user, otherwise 1.

• Diversity. We should have a good balance between chang-
ing the goal too frequently and always sticking to the same
goal. This reward is defined as 0 when the number of
facets talked around given goal lies in interval [2,4], oth-
erwise -1.

• Sustainability. It is reasonable to give priority to vertices
with lots of related knowledge or topic facets, we repre-
sent this reward as PageRank score of the chosen goal ver-
tex, which is calculated on the KG.

• Goal-completion information from the middle layer. We
calculate as the average rewards of rmd.
For the middle layer, we define its rewards rmd as a

weighted sum of the following factors with weights {β}21.
• Topic-facet coherence. We calculate coherence as cosine

distance in embedding space between the selected facet
and current topic.

• Rewards from the lower layer. We define as the average
rewards of rlow.
For the lower layer, we define its rewards rlw as a

weighted sum of the following factors with weights {φ}31.
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• Utterance relevance. It is calculated as rlwrel = σ(bt · ct),
where bt and ct stand for response and context encoded
by a response-encoder and a context encoder in the multi-
mapping generator, σ is a sigmoid function.

• Utterance informativeness. It is 1 if generated response
contains at least one piece of knowledge, otherwise 0.

• Topic-facet completion. It is 0 if the lower layer fails to
lead a conversation toward the given topic facet, or 1 if
the model succeeds but without mentioning the relations
between goals and facets, or 2 if the model succeeds and
at the same time mentions the relations.
In our experiment6, {α}51 are set as 1, 5, 1, 5000, 0.5; β1

equals to 1 and β2 is 0.5; {φ}31 are set as 1, 1, 2.

Optimization We employ the A2C method (Sutton and
Barto 2018) for model optimization rather than original pol-
icy gradient as used in previous works (Li et al. 2016b) to
make the learning process be stable. Moreover, we only up-
date the parameters of policies, and the pre-trained multi-
mapping generator and the user simulator stay intact.

Experiments and Results

Dataset

We use a publicly available knowledge-driven dialog
dataset, DuConv7, for pretraining of the multi-mapping
based generator, baselines and the user simulator. The
dataset consists of 30k dialogs with 120k dialogue turns. We
split it into training set (100k-turn), development set (10k-
turn) and test set (10k-turn). It also provides a KG in the do-
main of movies and celebrities. Each dialog is annotated by
two crowd-sourced annotators to conduct a multi-turn KG
grounded conversation towards a given entity, where the two
humans play the roles of “chatbot” and “user” respectively.

As the proposed KnowHRL have clear explainable dialog
states, e.g., explicit goals and facets, it enables us to employ
a “label trick” strategy to modify the train/development/test
set to ensure knowledge accuracy in generated utterances.
As shown in Figure 3: (1) we replace each topic word and
each topic-facet word with the label “topic” and “facet” re-
spectively. Meantime, we replace other triple values men-
tioned in the corpus with corresponding triple attributes or
relations; (2) we train KnowHRL and the multi-mapping
generator on this transformed DuConv dataset, not the orig-
inal one; (3) during testing procedure, KnowHRL generate
utterances with labels; (4) we restore the original values to
get final response utterances. This strategy is not applicable
to baselines since they cannot provide what is current topic
at each dialog turn, and then it is impossible to retrieve the
correct triple values for “knowledge labels” in generated re-
sponses. Thus baseline models and the user simulator are
trained on the original DuConv dataset.

Models

For empirical comparison, we select two state-of-the-art
models that are closely related to ours as baselines, which

6We conduct grid search for weights estimation.
7More details at https://arxiv.org/abs/1906.05572

Figure 3: Data flow with the “label” trick for KnowHRL.

also employ KG or RL for conversation generation. We im-
plement the two baselines by ourselves.

CCM It is a state-of-the-art KG based conversation model
(Zhou et al. 2018), which can attentively read multiple
knowledge triples to facilitate better response generation.

CCM+LaRL (Zhao, Xie, and Eskenazi 2019) proposed
a latent variable based RL model (LaRL) for conversation
generation, which outperforms traditional RL based dialog
models (Li et al. 2016b) by a large margin. We choose
the multivariate categorical latent variables as dialog ac-
tions which perform the best in their study. Furthermore,
we enable LaRL to utilize KG by incorporating the static
and dynamic graph attention mechanisms from CCM. This
strong baseline is denoted as CCM+LaRL. We utilize the
reward functions that use only utterance information for
CCM+LaRL. We utilize relevance of utterances and infor-
mativeness for RL training.

KnowHRL It is the proposed model. We pretrain a multi-
mapping generator with DuConv by choosing “bot” utter-
ances as responses to serve as the foundation of KnowHRL.

KnowHRL-liteReward To verify the effectiveness of
goal related reward factors for policy learning, we conduct
an ablation study by our model without goal related factors.
Concretely, we only use utterance relevance and utterance
informativeness as rewards for RL training.

The user simulator is another multi-mapping based gen-
eration model trained on DuConv to predict user-side utter-
ances. We use the same user simulator for RL training of
the three models, CCM+LaRL, KnowHRL and KnowHRL-
liteReward. During testing procedure, all the models share
the same pre-trained user simulator.

Evaluation Settings

Conversation with User Simulator Following the exper-
imental settings in prior work (Li et al. 2016b), we use the
user simulator to play the role of human. Then we let each
of the models to be evaluated generate the first utterance and
chat with the user simulator, till they reach the maximum
number of turns (which is set as 7 turns in this work). To
check the capability of these models to consider user feed-
back, we randomly insert utterances with new entities (far
away from current topic in KG) as user’s responses, once
for each session. Finally we collect multi-turn dialogs gen-
erated by each model for evaluation.
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Conversation with Human We also perform evaluation
against human subject for a more thorough empirical study.
Specifically, we setup human evaluation interfaces and ask
human annotators to converse with each of the models till
they reach the maximum number (set as 10) of turns. To
check the capability of these models to consider user feed-
back, we ask human to change chatting topics in the middle
of session (e.g., at the third or fourth turn). Finally we collect
multi-turn dialogs generated by each model for evaluation.

Evaluation Metrics

Metrics such as BLEU and perplexity have been widely used
for dialog quality evaluation (Li et al. 2016a; Serban et al.
2016), but it is widely debated how well these automatic
metrics are correlated with true response quality(Liu et al.
2016). Since the proposed model does not aim at predict-
ing the highest-probability response at each turn, but rather
the long-term success of a dialog, we do not employ BLEU
or perplexity for evaluation, and we propose the following
evaluation metrics.

Evaluation Metrics at Session Level For each model
to be evaluated, we randomly sample 100 dialogs for the
settings of conversation with user simulator or human, in
which, on average, each dialog consists of 14 utterances.
We ask three annotators to judge session-level quality. For
the convenience of evaluation, each dialog is split into sub-
sessions according to chatting topics, and then they judge the
quality of each sub-session. Notice that model identifiers are
masked during evaluation. Session-level metrics include:

• Intra-topic coherence. We first define intra-topic incoher-
ence problems as follows: (1) anaphora errors across ut-
terances, e.g. using “she” to refer to a male actor men-
tioned, (2) simply copying consecutive words or phrases
within an utterance, (3) incorrect collocation, e.g., using
another movie name as the director of the movie men-
tioned in previous utterances. For each sub-session, the
annotators are asked to rate with a score of {“0”, “+1”,
“+2”}. A sub-session will be rated “0” if it contains more
than one incoherence problems, and then this sub-session
is considered to be incomprehensible. If a sub-session
contains one incoherence flaws, it will be rated “+1”. A
sub-session with no incoherence flaws will be rated “+2”.
Finally we obtain an average score for each dialog.

• Inter-topic coherence. For evaluation of topic-changing
smoothness, annotators perform the judgment at each
topic-changing position between two sub-sessions. They
use intra-topic coherence results to help this annotation.
Specifically, if the previous adjacent sub-session is incom-
prehensible (“0” for intra-topic coherence evaluation),
then current position will be rated “0”. Otherwise, current
position will be rated “+2” if a new topic is introduced by
mentioning its relation to current topic or topic facet. If
only conjunction words (e.g. another) are used for topic
changing, it will be rated “+1”. It will be rated with “0”
if a new topic suddenly appears without any sign or sug-
gestion, and breaks current conversation flow. Finally we
obtain an average score for each dialog.

Model Intra. Inter. Dist-2 K.A. Cons.
CCM 0.67 0.32 0.27 0.14 0.06
CCM+LaRL 0.94 0.44 0.32 0.17 0.09
KnowHRL 1.42 1.39 0.39 0.88 0.89

-liteReward 1.13 0.41 0.35 0.81 0.07

Table 2: Results of session-level evaluations on dialogs with
user simulator. KnowHRL outperforms all the baselines sig-
nificantly (sign test, p-value < 0.01) in all the metrics.

Model Intra. Inter. Dist-2 K.A. Cons.
CCM 0.72 0.40 0.29 0.13 0.09
CCM+LaRL 0.98 0.52 0.33 0.19 0.17
KnowHRL 1.40 1.45 0.41 0.90 0.93

-liteReward 1.16 0.46 0.38 0.84 0.13

Table 3: Results of session-level evaluations on dialogs with
human. KnowHRL outperforms all the baselines signifi-
cantly (sign test, p-value < 0.01) in terms of all the metrics.

• Distinct. The metric Dist-i calculates the ratio of distinct
i-gram in generated responses (Li et al. 2016a). We use
Dist-2 to measure the diversity of generated responses.

• Knowledge accuracy (K.A.). For each model, we ran-
domly sample 100 entity mentions in generated utter-
ances. Then the annotators judge their correctness based
on triple attributes mentioned in utterances with the help
of a KG and provide a score of {“0”, “+1”}, where “1”
means “correct knowledge in responses”.

• User-interest consistency (Cons.). To evaluate if a model
can respond appropriately when the user mentions a new
topic, for each dialog, we ask the annotators to identify
the positions with new topics and then judge the quality.
A position will be rated “1” if the model follows the user’s
new topic and chats about it, otherwise “0”.

Results As shown in Table 2 and Table 3, KnowHRL out-
performs all the baselines significantly (sign test, p-value <
0.01) in terms of all the metrics.

In terms of intra-topic coherence, KnowHRL outperforms
baselines. KnowHRL can conduct an in-depth conversation
with a clear “central topic”, indicating the effectiveness of
our goal-driven generation mechanism. However, the base-
lines tend to briefly talk about loosely related entities with
lots of anaphora errors and incorrect collocations.

In terms of inter-topic coherence, KnowHR outperforms
baselines by a large margin. KnowHRL can attain smooth
dialog transition when changing the topics, indicating the
effectiveness of our goal-sequence planning model and re-
sponse generation model. However, CCM and CCM+LaRL
tend to mention a new entity without indication of its rela-
tion to current topic. Moreover, they might use knowledge
across multiple topics for generation at a single turn. In con-
trast, our model explicitly selects a topic and focuses on only
one topic across multiple dialog turns.

In terms of Distinct-2, results show that our two model
can generate responses with diverse knowledge triples. In
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contrast, CCM and CCM+LaRL prefer to mention high fre-
quency knowledge.

In terms of knowledge accuracy, results show that there
is an issue of knowledge usage for the two baselines. The
reason is that CCM selects knowledge based on similarity
with various “attention” mechanisms, but there is no mecha-
nism to guarantee the correctness of knowledge in generated
responses. In contrast, response generation in KnowHRL is
guided by goals and topic-facets, and our “label trick” strat-
egy provides an promising mechanism to ensure correctness.

In terms of user-interest consistency, our models can gen-
erate responses being consistent with user’s topics. In con-
trast, the two baselines tend to ignore new topics introduced
by the user. It validates the effectiveness of our goal plan-
ning module. It also indicates that our model can achieve
a good balance between global dialog coherence and local
topic consistency with user interests.

Ablation study To clarify what boosts the performance of
KnowHRL, we remove all the rewards from KnowHRL ex-
cept the widely used two factors: utterance relevance and ut-
terance informativeness, denoted as KnowHRL-liteReward.
As shown in Table 2, the performances of KnowHRl-
liteReward drops dramatically in terms of inter-topic coher-
ence and user interest consistency. It indicates that goal re-
lated rewards are crucial to maintain inter-topic coherence
and user interest consistency. Meantime, knowledge accu-
racy of KnowHRL-liteReward drops sightly, but still outper-
forms the two baseline models. It indicates that our advan-
tage in knowledge accuracy is not brought by the rewards.

In summary, we have some findings: (1) With the help
of KG, and our strategy of divide-and-conquer for open-
domain conversation generation, we obtain explainable di-
alog states and actions for KnowHRL. (2) With these ex-
plainable states and actions, it is convenient to design goal-
related rewards to optimize the planning of goals and topic
facets, (3) These goals and topic facets can be used to guide
response generation for better dialog coherence and infor-
mativeness. (4) With these explainable states and actions,
KnowHRL is compatible with the “label trick” strategy,
which leads to higher knowledge accuracy.

Evaluation at Turn Level For evaluation of each model,
we randomly sample 200 utterances from dialogs with the
setting of conversation with user simulator or human, and
use the previous utterance as dialog context. We ask three
annotators to judge turn-level quality. Notice that model
identifiers are masked during evaluation. (1) Appropriate-
ness. A response will be rated “0” if it is irrelevant to the
context, otherwise “1”. (2) Informativeness. A response will
be rated “+1” if it contains at least a piece of knowledge from
KG, e.g., entities/comments/facts, otherwise “0”. As shown
in Table 4, KnowHRL outperforms all the baselines in terms
of turn-level response appropriateness and informativeness
when chatting with user simulator and human.

Related Work

Seq2Seq Based Dialog Models To address the issue of
generic responses in seq2seq models, some studies have

Models Simulator Human
Appr. Infor. Appr. Info.

CCM 0.74 0.81 0.79 0.84
CCM+LaRL 0.77 0.78 0.81 0.81
KnowHRL 0.87 0.91 0.89 0.94

-liteReward 0.82 0.83 0.85 0.87

Table 4: Turn-level results on dialogs with user simulator
and dialogs with human.

been conducted to improve response informativeness (Yao
et al. 2017; Xing et al. 2017; Wang et al. 2018; Zhao,
Zhao, and Eskenazi 2017). However, these models have
no explicit high-level topics to guide multi-turn conversa-
tion generation, thus tending to generate less coherent di-
alogs. Recently, imposing goals on open-domain conversa-
tion generation models having attracted lots of research in-
terests (Moon et al. 2019; Li et al. 2018; Tang et al. 2019;
Wu et al. 2019) since it enables practical applications, e.g.,
recommendation of engaging entities. However, these mod-
els can just produce a dialog towards a single goal, instead
of a goal sequence as done in this work.

Dialog Models With RL RL has been used to encourage
coherent, informative, and long-lasting utterance sequences
(Li et al. 2016b; Serban et al. 2017; Zhang et al. 2018; Yao
et al. 2018; Zhao, Xie, and Eskenazi 2019). However, they
still tend to generate less coherent dialogs since they have
no explicit high-level topics to guide response generation.
Hierarchical RL models have been studied for task oriented
dialog (Peng et al. 2017; Budzianowski et al. 2017), while
we focus on open-domain dialog in this work.

Knowledge Aware Conversation Generation Further,
there are growing interests in leveraging knowledge
for generation of appropriate and informative responses
(Ghazvininejad et al. 2018; Sangdo Han and Lee 2015;
Liu et al. 2018; Vougiouklis, Hare, and Simperl 2016;
Young et al. 2018; Zhou et al. 2018).

Conclusion

In this work we propose a Knowledge graph grounded Hi-
erarchical RL based conversational model (KnowHRL) to
demonstrate how hierarchical goal planning over a KG can
facilitate chatting topic management and further response
generation. Results show that KnowHRL outperforms base-
lines in terms of dialog coherence, user interest consistency,
and knowledge accuracy. In the future, we would like to in-
vestigate how to enrich the content of KG to cover more
chatting topics from open-domain dialog corpora.
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T.-H.; Casanueva, I.; Rojas-Barahona, L.; and Gašić, M.
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